【計算分析題】
1.(計算分析題)甲公司是一家化工生產企業,生產需要X材料,該材料價格為2300元/噸,年需求量3600噸(一年按360天計算)。一次訂貨成本為600元,單位儲存成本300元/年,缺貨成本每噸1000元,運費每噸200元。材料集中,延遲2天到貨概率為10%,假設交貨期的材料總需求量根據每天平均需求量計算。如果設置到貨,正常到貨概率為80%,延遲1天到貨概率為10%保險儲備,則以每天平均需求量為最小單位。
要求:
(1)計算X材料的經濟訂貨量、年訂貨次數與批量相關的年存貨總成本。
(2)計算X材料不同保險儲備量的年相關總成本,并確定最 佳保險儲備量。
參考答案:
(1)X的經濟訂貨量=(2×3600×600/300)^0.5=120(噸)、與批量相關的年存貨總成本=(2×3600×600×300)^0.5= 36000年訂貨次數=3600/120= 30(次)(元)
(2)每天需求量=3600/360=10噸
保險儲備為0時,平均缺貨量=10×10%+20×10%=3(噸)
相關總成本=3×1000×30 = 90000(元)
保險儲備為10噸時,平均缺貨量=10%×10%=1(噸)
相關總成本=1×1000×30+10×300= 33000(元
保險儲備為20噸時,不會發生缺貨,此時相關總成本=20x300=6000(元)
可見,保險儲備為20噸時相關總成本最小,所以最 佳保險儲備最為20噸。
編輯推薦:
(責任編輯:)