垃圾收集的算法分析
java語言規范沒有明確地說明jvm使用哪種垃圾回收算法,但是任何一種垃圾收集算法一般要做2件基本的事情:(1)發現無用信息對象;(2)回收被無用對象占用的內存空間,使該空間可被程序再次使用。
大多數垃圾回收算法使用了根集(rootset)這個概念(有了這個概念應該就能解決面試中被問到的互為引用的孤獨島的情況);所謂根集就是正在執行的java程序可以訪問的引用變量的集合(包括局部變量、參數、類變量),程序可以使用引用變量訪問對象的屬性和調用對象的方法。垃圾收集首選需要確定從根開始哪些是可達的和哪些是不可達的,從根集可達的對象都是活動對象,它們不能作為垃圾被回收,這也包括從根集間接可達的對象。而根集通過任意路徑不可達的對象符合垃圾收集的條件,應該被回收。下面介紹幾個常用的算法。
1、引用計數法(referencecountingcollector)
引用計數法是唯一沒有使用根集的垃圾回收得法,該算法使用引用計數器來區分存活對象和不再使用的對象。一般來說,堆中的每個對象對應一個引用計數器。當每一次創建一個對象并賦給一個變量時,引用計數器置為1。當對象被賦給任意變量時,引用計數器每次加1。當對象出了作用域后(該對象丟棄不再使用),引用計數器減1,一旦引用計數器為0,對象就滿足了垃圾收集的條件。
基于引用計數器的垃圾收集器運行較快,不會長時間中斷程序執行,適宜地必須實時運行的程序。但引用計數器增加了程序執行的開銷,因為每次對象賦給新的變量,計數器加1,而每次現有對象出了作用域生,計數器減1。
2、tracing算法(tracingcollector)
tracing算法是為了解決引用計數法的問題而提出,它使用了根集的概念。基于tracing算法的垃圾收集器從根集開始掃描,識別出哪些對象可達,哪些對象不可達,并用某種方式標記可達對象,例如對每個可達對象設置一個或多個位。在掃描識別過程中,基于tracing算法的垃圾收集也稱為標記和清除(mark-and-sweep)垃圾收集器.
3、compacting算法(compactingcollector)
為了解決堆碎片問題,基于tracing的垃圾回收吸收了compacting算法的思想,在清除的過程中,算法將所有的對象移到堆的一端,堆的另一端就變成了一個相鄰的空閑內存區,收集器會對它移動的所有對象的所有引用進行更新,使得這些引用在新的位置能識別原來的對象。在基于 compacting算法的收集器的實現中,一般增加句柄和句柄表。
4、coping算法(copingcollector)
該算法的提出是為了克服句柄的開銷和解決堆碎片的垃圾回收。它開始時把堆分成一個對象面和多個空閑面,程序從對象面為對象分配空間,當對象滿了,基于coping算法的垃圾收集就從根集中掃描活動對象,并將每個活動對象復制到空閑面(使得活動對象所占的內存之間沒有空閑洞),這樣空閑面變成了對象面,原來的對象面變成了空閑面,程序會在新的對象面中分配內存。
一種典型的基于coping算法的垃圾回收是stop-and-copy算法,它將堆分成對象面和空閑區域面,在對象面與空閑區域面的切換過程中,程序暫停執行。
5、generation算法(generationalcollector)
stop-and-copy垃圾收集器的一個缺陷是收集器必須復制所有的活動對象,這增加了程序等待時間,這是coping算法低效的原因。在程序設計中有這樣的規律:多數對象存在的時間比較短,少數的存在時間比較長。因此,generation算法將堆分成兩個或多個,每個子堆作為對象的一代 (generation)。由于多數對象存在的時間比較短,隨著程序丟棄不使用的對象,垃圾收集器將從最年輕的子堆中收集這些對象。在分代式的垃圾收集器運行后,上次運行存活下來的對象移到下一最高代的子堆中,由于老一代的子堆不會經常被回收,因而節省了時間。
6、adaptive算法(adaptivecollector)
在特定的情況下,一些垃圾收集算法會優于其它算法。基于adaptive算法的垃圾收集器就是監控當前堆的使用情況,并將選擇適當算法的垃圾收集器。
編輯推薦
(責任編輯:xy)